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Abstract 

The single most important bibliometric criterion for 
judging the impact of biomedical papers and their 
authors� work is the number of citations received which 
is commonly referred to as �citation count�. This 
metric however is unavailable until several years after 
publication time. In the present work, we build 
computer models that accurately predict citation counts 
of biomedical publications within a deep horizon of ten 
years using only predictive information available at 
publication time. Our experiments show that it is indeed 
feasible to accurately predict future citation counts with 
a mixture of content-based and bibliometric features 
using machine learning methods. The models pave the 
way for practical prediction of the long-term impact of 
publication, and their statistical analysis provides 
greater insight into citation behavior.  

Introduction 
A commonly accepted metric for evaluating the impact 
and quality of an article is the citation count which is 
the number of citations received by this article within a 
pre-specified time horizon [1]. The main limitation of 
citation count is its unavailability before this horizon 
expires (typically several years after publication). This 
delay renders citation counts primarily useful for 
historical assessment of the scientific contribution and 
impact of papers.  Another limitation of citation count is 
that it is a subjective measure [1]. 

Automatic prediction of citation counts would provide a 
powerful new method for evaluating articles while 
alleviating many difficulties associated with the 
explosive growth of the biomedical literature. Faster 
identification of promising articles could accelerate 
research and dissemination of new knowledge. Accurate 
models for citation count prediction would also improve 
our understanding of the factors that influence citations. 

Predicting and understanding article citation counts is 
however a very hard problem both on theoretical 
grounds and on the basis of several decades of related 
empirical work. In fact, the bulk of the literature 
concerning citation counts relates to understanding the  
motivating factors for article citations rather than 
predicting them. For an excellent survey, see [1].  

From a theoretical point of view, it has been found that 
citation prediction is difficult because of the nature and 
dynamics of citations [2, 3]. Citations are a noisy, 
indirect quality measure, and accumulation rates vary 
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unpredictably between articles. Breakthrough papers 
can stop receiving citations after review articles replace 
them or the subject matter becomes common knowledge 
[2]. Predictions based on current data assume that 
citation behavior will not change in the future, and this 
assumption may be violated in fast-paced research 
fields such as biomedicine. Another difficulty in making 
accurate predictions is the sparseness of a citation 
network [3]. Fitting a reliable statistical model is 
difficult since the number of links is small compared to 
the number of nodes, and negative cases (i.e., non-
connected nodes) grow much more rapidly than positive 
cases (i.e., connected nodes) [4]. 

From an empirical perspective, previous research has 
predicted long-term citation counts based on citations 
accumulated shortly after publication. In the Knowledge 
Discovery and Data Mining Cup competition of 2003 
[5], research groups predicted the evolution of the 
number of citations received by a set of 441 well-cited 
articles in high-energy physics during successive three 
month periods. In other work, Castillo et al. [6] used 
linear regression and citation count after 6 months to 
predict citation count after 30 months. They 
incorporated author-related information (i.e., the 
number of previous citations, publications, and co-
authors for an author) to improve predictions. The 
resulting model had a correlation coefficient of 0.81 
between the true number of citations received and 
predicted values for 1500 articles from Citeseer, a 
database of computer science articles. 

A recent report by Lokker [7]  is closest to the aims of 
our work. It presents a regression model to predict 
citation counts in a time horizon of two years based on 
information available within three weeks of publication. 
It uses characteristics of an article that are either 
structural (e.g., whether it contains a structured abstract) 
or a result of manual systematic review criteria. This 
model has modest predictivity and explanatory power 
(0.76 area under the receiver operating characteristic 
curve and 60% explained variation). 

In our work, we hypothesize that we can achieve much 
greater predictivity and a deeper prediction horizon (ten 
years instead of two) compared to prior efforts by 
including in the model the full content terms of the 
MEDLINE abstract and MeSH keywords as well as 
bibliometric information about the authors, journals, 
and institutions. Furthermore, we only use information 
available at publication time. As a corollary to the 
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above model-building effort, we also study factors that 
correlate strongly and potentially determine the chances 
of an article being cited by many subsequent articles. 

Methods 

Predictive Features and Response Variables: Table 1 
lists the input features used to construct a learning 
corpus for predictive modeling. The number of articles 
or citations for first and last authors was counted for 10 
years prior to publication. Publication type indicates if 
a paper was identified as an article or review by the 
bibliometric database which was the Web of Science 
(WOS) of the Institute of Scientific Information (ISI) 
[8]. The Academic Ranking of World Universities 
(ARWU) [9] was used as the measure of quality for first 
author�s institution. Number of institutions refers to 
unique home institutions for all authors. All other 
variables are self-explanatory.  

The response variable is defined by a set of citation 
thresholds to determine if an article is labeled positive 
or negative. For a given threshold, a positive label 
means that an article received at least that number of 
citations within 10 years of publication. Thresholds 
were chosen (before analysis) to be 20, 50, 100, and 
500 citations. In the space of topics covered by the 
corpus (see next subsection), papers with at least 20, 50, 
100, and 500 citations within 10 years can be 
interpreted to be at least: mildly influential, relatively 
influential, influential, and extremely influential 
respectively.  

Predictions were made for a binary response variable 
rather than a continuous one in the present analysis 
primarily because error metrics for discrete values are 
easier to interpret than continuous ones. Continuous 
loss functions such as mean square error or percent 
variation explained are more difficult to interpret in 
terms of practical significance.  

Corpus Construction: We built a corpus for model 
training and evaluation by specifying a set of topics, 
journals, and dates. Eight topics were chosen from 
internal medicine as defined by the MeSH vocabulary: 
Cardiology, Endocrinology, Gastroenterology, 
Hematology, Medical Oncology, Nephrology, 
Pulmonary Disease, and Rheumatology. An article was 
operationally considered relevant to a topic if its 
MEDLINE record contained one of the eight MeSH 
terms, a related topic from the �See Also� field of the 
MeSH record, or a term from a sub-tree of one of these 
terms (http://www.nlm.nih.gov/mesh/). For example, an 
article was Cardiology-related if it contained the MeSH 
heading �Cardiology�, a related term like 
�Cardiovascular Diseases�, or a term from a sub-tree. 
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Table 1: List of features included in each learning model 

Feature Complete 
model 

Content 
model 

Biblio. 
model 

I.F. 
model 

Article title x x   
Article abstract x x   
MeSH terms x x   

Number of articles for 
first author x x

Number of citations for 
first author x x

Number of articles for 
last author x x

Number of citations for 
last author x x

Publication type x  x  
Number of authors x  x  

Number of institutions x  x  
Journal impact factor x  x x 

Quality of first author�s 
institution x x
Articles were included from six journals: American 
Journal of Medicine, Annals of Internal Medicine, 
British Medical Journal, Journal of the American 
Medical Association, Lancet, and New England Journal 
of Medicine. The journals were selected to include 
popular journals with a broad range of impact factors. 
The corpus contained articles published between 1991 
and 1994 to allow collection of citation data for a 10 
year period after publication of the most recent articles. 
The window length was chosen so that citation rates 
would have sufficient time to become relatively stable. 

PubMed was queried for all desired articles, and 
additional information was downloaded from the 
bibliometric database, the ISI Web of Science (WOS) 
[8]. Documents were excluded if bibliometric data was 
unavailable, and the final corpus contained 3788 
documents. The complete model consisted of 20005 
total features, and information was downloaded in May 
2007. Positive-to-negative class ratios for each 
threshold were as follows: 2705/1083 for threshold 20, 
1858/1930 for threshold 50, 1136/2652 for threshold 
100, and 100/3688 for threshold 500 citations.   

Document Representation: Articles were formatted for 
learning by text preprocessing and term weighting. The 
title, abstract, and MeSH terms were extracted from 
MEDLINE records. PubMed stop words (http://www. 
ncbi.nlm.nih.gov/books/bv.fcgi?rid=helppubmed.table.p
ubmedhelp.T43) were removed from the title and 
abstract. Multiple forms of the same word were 
eliminated with the Porter stemming algorithm [10] to 
reduce the dimensionality of the input space. Terms 
were weighted using log frequency with redundancy 
which considers term frequency in a document and the 
corpus [11, 12]. Each weight was a value between 0 and 
1. In the end, the corpus was represented as a matrix 
where rows corresponded to documents and columns 
represented terms. Bibliometric features were also 
scaled linearly between 0 and 1. 
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Learning Method: Support vector machine (SVM) 
models were used as the learning algorithm. They are a 
supervised learning method where a kernel function 
maps the input space to a higher-dimensional feature 
space, and a hyperplane is calculated to separate the 
classes of data. The optimal hyperplane is the solution 
to a constrained quadratic optimization problem. SVM 
models are usually sparse since the solution depends on 
the support vectors or points closest to the hyperplane 
[13]. SVMs are well suited for representing text which 
typically involves high-dimensional data. Prior research 
has demonstrated that they perform well in categorizing 
text and identifying high-quality articles [11, 12].  

Model Selection and Error Estimation: We performed 
5-fold nested cross validation and optimized parameters 
for cost and degree in the inner loop while the outer 
loop produced an unbiased estimate of model 
predictivity. The set of costs was [.1, .2, .4, .7, .9, 1, 5, 
10, 20], and the set of degrees was [1, 2, 3, 4, 5, 8]. 
Performance was measured by area under the receiver 
operating characteristic curve (AUC). AUC was chosen 
instead of accuracy since AUC is not dependent on the 
ratio of positive and negative cases. Recall that an AUC 
of 0.5 describes a random classifier, AUC of ~.75 a 
mediocre classifier, AUC of ~0.85 a very good 
classifier, and AUC > 0.9 an excellent classifier (while 
an AUC of 1 denotes perfect classification).  

Analysis of Influential Features: After fitting the 
complete models (i.e., with all features) and estimating 
their performance, we identified the most influential 
features using two types of analysis. First, we trained 
three reduced-feature models for each threshold based 
only on the content, bibliometric data, or impact factor. 
Table 1 shows the features included in each model. 
Performance of these models revealed whether one type 
of feature was more important than the others. 

A second feature-specific analysis was performed as 
follows: we reduced the total number of features by 
selecting only features in the Markov Blanket of the 
response variable (i.e., number of citations received). 
The Markov Blanket is the smallest set of features 
conditioned on which all remaining features are 
independent of the response variable. Thus it excludes 
both irrelevant and redundant variables without 
compromising predictivity, and it provably results in 
maximum variable compression under broad 
distributional assumptions [14]. The specific algorithm 
used was semi-interleaved HITON-PC without 
symmetry correction which is an instance of the 
Generalized Local Learning class of algorithms [14]. 
Before proceeding, we verified that the reduced feature 
set indeed predicts citation counts as well as the original 
model. After this variable selection and verification 
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step, logistic regression analysis was employed to 
estimate for each feature the magnitude of its effect and 
statistical significance on predicting citation counts 
while controlling for all other features in the LR model.
Notice that the raw SVM weights, or Recursive Feature 
Elimination (RFE) weights in the polynomial SVM 
case, cannot be used for the same purpose. SVMs do 
not control for the effect of all other variables on the 
weight of each feature in the SVM model contrary to 
logistic regression. Instead SVMs �spread� weights to 
otherwise conditionally independent features in order to 
implicitly model a smoother decision function. 

Implementation Details: Corpus construction and 
feature weighting were implemented in custom Python 
scripts. For text-based features, the scripts constructed 
PubMed queries, retrieved desired articles, downloaded 
MEDLINE records, and preprocessed text. For 
bibliometric features, the WOS database was queried 
with the title, author, and journal of each article. If a 
match was found, a user session was simulated by 
navigating through the website and extracting desired 
information about the document and authors. 

The remainder of the code was written in MATLAB. 
LIBSVM was used to train SVM models, and it 
included a MATLAB interface [15]. Scripts were 
written to perform cross-validation and estimate 
performance. A custom MATLAB implementation for 
HITON was used as well as the logistic regression 
implementation of the MATLAB statistics toolbox. 

Results 

Overall Predictivity: Figure 1 shows the performance of 
four different types of models: the complete model with 
all features, models with only content features, models 
with only bibliometric features, and models with only 
the impact factor. The complete model accurately 
predicted whether a publication received a given 
number of citations for each citation threshold. AUC 
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Figure 1: Performance for models based on all features, content, 
bibliometric features, and impact factor 
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Table 2: Top 10 features sorted by absolute value of regression coefficients for thresholds of 50 (left) and 100 (right) citations. 

Feature Reg. 
Coeff P-value Std. 

Error 
 Feature Reg. 

Coeff P-value Std. 
Error 

splenectomi -3.406 0.006 1.243  First Author Citations [WOS] 5.753 0.000 1.469 
Journal Impact Factor [WOS] 3.342 0.000 0.164  Smoking:mortality [MeSH] 4.224 0.018 1.785 
Last Author Citations [WOS] 3.147 0.001 0.914  offset 3.347 0.007 1.232 

ciprofloxacin -2.858 0.019 1.223  Journal Impact Factor [WOS] 3.320 0.000 0.180 
Anemia, Sickle Cell [MeSH] -2.760 0.000 0.681  Last Author Citations [WOS] 3.023 0.001 0.872 

Rural Health [MeSH] -2.668 0.015 1.097  Birth Weight [MeSH] 2.954 0.000 0.770 
brain 2.574 0.000 0.635  Pilot Projects [MeSH] -2.912 0.013 1.173 

history [MeSH] -2.442 0.046 1.227  Autoantibodies:blood [MeSH] 2.783 0.001 0.810 
Zidovudine:therap. use[MeSH] 2.424 0.030 1.114  Family Practice [MeSH] -2.746 0.016 1.140 

Death, Sudden [MeSH] -2.329 0.014 0.948  person [Title] 2.576 0.002 0.828 
values range from 0.857 to 0.918 depending on 
threshold. 

Testing for Overfitting: In response to the unexpectedly 
high level of achieved predictivity, we performed an 
additional analysis to verify that the results were 
generalizable (i.e., not overfitted). The analysis 
borrowed from state-of-the-art analysis of high-
throughput data by randomly reshuffling citation counts 
followed and rebuilding all models on the reshuffled 
data [16] exactly as was done for non-shuffled data. 
This procedure yielded AUC estimates of 0.5 since 
reshuffling eliminated the predictive association of the 
features to the outcome. This result verified that our 
original analysis was not overfitted.  

Predictivity by Feature Type: After establishing that 
model performance was not due to overfitted analysis, 
we focused our attention on estimating predictivity 
when learning was performed on subsets of the features. 
As shown in Figure 1, the consistent trend in all 
thresholds was: AUC(complete model) ≥ AUC(content 
only features) ≥ AUC(bibliometric only features) ≥
AUC(impact factor only). The impact factor model had 
the lowest predictivity for all thresholds. This 
predictivity was much lower than that of the complete 
model (differences in AUCs range from 0.065 to 
0.154). The results in Figure 1 also show that both 
content and bibliometric features had individually high 
predictivity. AUC was maximized only when combining 
all types of predictive features. 

Analysis of Individual Features: As explained in the 
methods section, Markov Blanket induction was used to 
select only non-redundant and relevant features, and 
logistic regression was used to estimate feature 
importance and statistical significance of the selected 
features. The original set of 20,005 features was 
reduced to 169, 125, 132, and 138 features for 
thresholds 20, 50, 100, and 500 respectively. Table 2 
shows the top 10 ranked features according to absolute 
values of regression coefficients for citation thresholds 
50 and 100. A full-length journal version of the present 
work will provide the full results.   
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Recall that a positive unit change in a regression 
coefficient β for a feature corresponds to eβ increase in 
the odds of exceeding the citation count threshold for 
which the model is built. For example, �First Author 
Citations� had the largest coefficient of 5.753 for 
citation threshold 100. This value indicates that an 
article with the greatest number of first author citations 
was about 315 times (e 5.753 ≈ 315) more likely to 
receive 100 citations than an article with no first author 
citations (notice that a one-unit change for interval-
based features corresponds to a difference between the 
largest and smallest values since interval variables were 
scaled in the [0,1] range). 

The feature-specific analysis points to several important 
conclusions: (a) certain �hot� topics were associated 
with high citation rates (e.g., smoking:mortality [MeSH] 
was 68 times more likely to exceed 100 citations when 
controlling for other factors); (b) other topics or types 
of practice indicated smaller citation probability (e.g., 
splenectomi* and family practice were about 33 and 17 
times less likely to receive 50 and 100 citations); (c) 
citation history of first and last author played a 
significant role in citation rates by increasing the 
chances of exceeding 100 and 50 citations by 315 and 
23 times when comparing the best and worst citation 
histories; (d) For each threshold, different sets of 
content features were selected (and ranked differently in 
the top positions) which indicates that the importance of 
content changed for different levels of citation impact. 
On the other hand, bibliometric features and impact 
factor were predictive and always had large positive 
effects for all thresholds studied. 

Discussion 

Our experiments show that article citations can be 
predicted accurately for several distinct levels of 
citation performance even in a deep time horizon and 
with information strictly available at publication time.  

In constructing the corpus, we hypothesized that 
information about the publication history of first and 
last author as well as the home institution of the first 
author would be highly predictive for citation counts.  
Furthermore, another reason why these analyses were 
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successful compared to previous approaches is that 
newer developments in classifier technology allowed 
the routine use of all content terms in article titles, 
abstracts, and MeSH terms without adversely affecting 
predictivity with this high dimensionality.  It is 
important to note that the use of content terms limits our 
method to journals indexed by PubMed. 

Our modeling is very different from that of Lokker [7] 
both in design and results. Specifically, we attempted 
and achieved a prediction that spans a longer time 
horizon.  We started with a very large predictive feature 
space and utilized machine learning and feature 
selection algorithms to identify predictive patterns while 
narrowing down the required features. Our starting 
features differed substantially since we relied on content 
and bibliometric information whereas [7] used article-
specific structural and systematic review criteria. The 
models produced in this work achieved predictivity that 
exceeded the predictivity of [7] by about 0.10 to 0.16 
AUC depending on the model. Notably, the reported 
predictivity of the model in [7] of AUC 0.76 should be 
no better (as evidenced in our experiments with 
different feature sets) than a single relatively weak 
variable: the impact factor, which was not used in their 
models.  Note that one cannot conclusively compare 
results for the two studies because of the differences in 
chosen journals and time horizons. Because the two 
studies were independently conducted during roughly 
the same period,1 we did not have access to the set of 
features chosen or the corpus used in the study of [7] in 
order to perform a head-to-head comparison with the 
methods herein. This is clearly an area of interesting 
future research. 

In conclusion, the results of the present work pave the 
way for practical models to predict future citations 
without requiring citations to slowly build over time. 
Such models have the potential to render citation counts 
a more practical tool for evaluating long-term impact of 
recent work and their authors instead of waiting for 
years as is current practice. Avoiding excessive reliance 
on less accurate heuristics such as impact factor is 
another advantage. Finally, analysis of the relative 
importance of various input variables for citation counts 
suggests that several factors may causatively influence 
or even bias citation practices, and this is an important 
direction for our future work.  

Acknowledgements 

The authors thank Drs. Cindy Gadd, Nunzia Giuse, Lily 
Wang, and Daniel Masys for their helpful comments. 

1 R.Brian Haynes, personal communication, November 
2007 
AMIA 2008 Symposium P
References 

1. Bornmann L, Daniel H. What do citation counts 
measure? A review of studies on citing behavior. 
Journal of Documentation. 2007. 

2. Feitelson D, Yovel U. Predictive ranking of 
computer scientists using CiteSeer data. Journal of 
Documentation. 2004. 60(1): 44-61. 

3. Getoor L. Link mining: a new data mining 
challenge. SIGKDD Explorations. 2003.5(1): 84-89. 

4. Rattigan M, Jensen D. The case for anomalous link 
discovery. SIGKDD Explorations. 2003.5(1): 41-47. 

5. Gehrke J, Ginsparg P, Kleinberg J. Overview of the 
2003 KDD CUP. SIGKDD Explorations. 2003. 
5(2): 149-151. 

6. Castillo C, Donato D, Gionis A. Estimating the 
number of citations using author reputation. 
Proceedings of String Processing and Information 
Retrieval (SPIRE). 2007. 107-117. 

7. Lokker C, McKibbon KA, McKinlay RJ, et al. 
Prediction of citation counts for clinical articles at 
two years using data available within three weeks of 
publication: retrospective cohort study. BMJ. 2008. 
http://www.bmj.com/cgi/content/abstract/bmj.39482
.526713.BEv1. 

8. ISI Web of Science: Thomson Scientific. 
http://www.isiknowledge.com (accessed Mar 2008). 

9. Academic Ranking of World Universities: Shanghai 
Jiao Tong University. http://ed.sjtu.edu.cn/ 
anking2006.htm (accessed Mar 2008). 

10. Porter M. An algorithm for suffix stripping. 
Program. 1980. 14: 130-137. 

11. Aphinyanaphongs Y, Tsamardinos I, Statnikov A, et 
al. Text categorization models for high-quality 
article retrieval in internal medicine. JAMIA. 2005. 
12(2): 207-216. 

12. Leopold E, Kindermann J. Text categorization with 
support vector machines. Machine Learning. 2002. 
46: 423-444. 

13. Muller K, Mika S, Ratsch G, et al. An introduction 
to kernel-based learning algorithms. IEEE Trans. on 
Neural Networks. 2001. 12(2): 181-201. 

14. Aliferis C, Statnikov A, Tsamardinos I, et al. Local 
Causal and Markov Blanket Induction for Causal 
Discovery and Feature Selection for Classification. 
Submitted to JMLR. 2008. 

15. LIBSVM -- A Library for Support Vector Machines: 
Chang C, Lin C. http://www.csie.ntu.edu.tw/ 
~cjlin/libsvm/. (accessed Mar 2008). 

16. Aliferis C, Statnikov A, Tsamardinos I. Challenges 
in the Analysis of Mass-Throughput Data. Cancer 
Informatics. 2006. 2: 133-162. 
roceedings Page - 226


